top of page

Plants absorb 31% more CO2 than previously thought : a major discovery in climate action




A recent study published in Nature, led by an international team of researchers from Cornell University, reveals that terrestrial plants absorb about 31% more carbon dioxide (CO₂) through photosynthesis than previously estimated.


This groundbreaking finding is based on innovative technologies and methodologies that transform our understanding of the carbon cycle and underscore the critical role of natural ecosystems in combating climate change. 


What do we know about terrestrial photosynthesis ?


Terrestrial photosynthesis, or Gross Primary Production (GPP), refers to the total amount of carbon absorbed by plants via photosynthesis each year. This process is the primary carbon exchange between land and atmosphere, playing a fundamental role in the carbon cycle (see our article on the carbon cycle)


For decades, scientists estimated that terrestrial plants absorbed about 120 petagrams of carbon annually. However, with new models and advanced tools, this value has been revised to 157 petagrams per year, an impressive increase (1 petagram = 1 billion tons). 


The science behind the shift : what you need to know


This breakthrough relies on the use of an innovative tracer: carbonyl sulfide (COS). Unlike CO₂, COS follows a similar pathway through leaves but is not re-emitted by plants after absorption, making it a reliable indicator for measuring photosynthetic activity. 


Historically, models were primarily based on satellite data, which measure vegetation indices (NDVI) to estimate photosynthetic activity. While these observations provide a global perspective, they have significant limitations, particularly in tropical regions where cloud cover obstructs accurate data collection. 


To overcome these limitations, researchers focused on ground-based measurements, particularly from environmental monitoring towers that provide detailed data on gas exchanges such as CO₂ and COS. By integrating these measurements with more sophisticated models, they better accounted for mesophyll diffusion - the movement of gases from stomata to chloroplasts (organelles in plant cells where photosynthesis transforms CO₂ and sunlight into energy). This process, long overlooked, proved crucial for understanding photosynthetic efficiency. 


By combining satellite data, ground-based measurements, and innovative tracers like COS, scientists significantly improved global estimates of Gross Primary Production and reduced uncertainties related to the terrestrial carbon cycle. This integrated approach marks a significant advancement in modeling the interactions between terrestrial ecosystems and the climate. 


Why does this matter for climate ?


CO₂, responsible for 76% of the greenhouse effect, can persist in the atmosphere for centuries, amplifying its long-term impact on global warming. However, terrestrial ecosystems play a key role in its cycle: through photosynthesis, a portion of this CO₂ is quickly captured by plants and transformed into organic matter. 


These findings highlight the importance of restoring natural ecosystems, particularly tropical and coastal forests, to enhance carbon sinks and contribute to climate regulation.


Among these ecosystems, mangroves stand out for their exceptional carbon storage capacity, up to 1,023 tons per hectare compared to about 300 tons per hectare for a typical tropical forest (source: Alongi, 2012). At Apolownia, we focus on restoring Blue Carbon ecosystems and particularly mangroves, which excel in capturing carbon while offering vital benefits to biodiversity and local communities. This makes mangroves restoration a cornerstone solution in the fight against climate change.


ABOUT APOLOWNIA


Apolownia is a mission-driven company committed to making a significant impact in the climate sector.   


We support businesses and funds willing to engage in long-term and impactful decarbonization strategies - within and beyond their own value chain - by designing, implementing and monitoring science-based carbon reduction projects that restore natural ecosystems. 

Through technology and innovative solutions, we aim at shaping a resilient and environmentally friendly world, by encouraging the decarbonization of the economy and supporting social and environmental initiatives.


You can drive positive change for the climate, biodiversity and local communities. 

Contact us to engage or for more information. Find us on www.apolownia.com.



Sources:



Comments


Commenting has been turned off.
bottom of page